Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cannabis Cannabinoid Res ; 8(2): 299-308, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36454179

RESUMO

Introduction: The aggregation of misfolded proteins in the endoplasmic reticulum (ER) is a pathological trait shared by many neurodegenerative disorders. This aggregation leads to the persistent activation of the unfolded protein response (UPR) and ultimately apoptosis as a result of ER stress. Cannabidiol (CBD) has been demonstrated to be neuroprotective in various cellular and animal models of neurodegeneration, which has been attributed to its antioxidant and anti-inflammatory properties. However, little is known about the role of CBD in the context of protein folding and ER stress. The purpose of this study was to investigate whether CBD is neuroprotective against an in vitro model of ER stress. Materials and Methods: Using different exposure models, mouse striatal STHdhQ7/Q7 cells were exposed to either the ER stress inducer thapsigargin (TG) and/or CBD. Cell viabilities assays were used to investigate the effect of CBD pre-treatment, co-treatment, and post-treatment on TG-induced cell death. Real-time quantitative polymerase chain reaction was used to measure changes in ER stress regulators and UPR genes such as glucose-regulated protein-78 (GRP78), mesencephalic astrocyte-derived neurotrophic factor (MANF), B cell lymphoma 2 (BCL-2), BCL-2 interacting mediator of cell death (BIM), and caspase-12. Results: Cell viability increased significantly when cells were pre-treated with CBD before TG exposure. An increase in the gene expression of pro-survival ER chaperone GRP78 and ER-resident neurotrophic factor MANF coincided with this effect and decreased ER-mediated pro-apoptotic markers such as BIM, and caspase-12 was observed. Conclusions: These data suggest that CBD pre-treatment is neuroprotective against TG-induced cell death. Understanding the role of ER stress in CBD-driven neuroprotection provides insight into the therapeutic potential of CBD and the role of ER dysfunction in neurodegenerative disorders.


Assuntos
Canabidiol , Camundongos , Animais , Canabidiol/farmacologia , Chaperona BiP do Retículo Endoplasmático , Caspase 12 , Estresse do Retículo Endoplasmático , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Neurônios , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
2.
CNS Drugs ; 36(7): 739-770, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759210

RESUMO

While the intranasal administration of drugs to the brain has been gaining both research attention and regulatory success over the past several years, key fundamental and translational challenges remain to fully leveraging the promise of this drug delivery pathway for improving the treatment of various neurological and psychiatric illnesses. In response, this review highlights the current state of understanding of the nose-to-brain drug delivery pathway and how both biological and clinical barriers to drug transport using the pathway can been addressed, as illustrated by demonstrations of how currently approved intranasal sprays leverage these pathways to enable the design of successful therapies. Moving forward, aiming to better exploit the understanding of this fundamental pathway, we also outline the development of nanoparticle systems that show improvement in delivering approved drugs to the brain and how engineered nanoparticle formulations could aid in breakthroughs in terms of delivering emerging drugs and therapeutics while avoiding systemic adverse effects.


Assuntos
Transtornos Mentais , Administração Intranasal , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Nariz , Preparações Farmacêuticas/metabolismo
3.
Neurotoxicology ; 91: 321-328, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35728656

RESUMO

Ketamine has traditionally been used as a dissociative anesthetic agent and more recently as a treatment for treatment-resistant depression. However, there is growing concern over the increased use of ketamine in recreational and therapeutic settings due to the potential neurotoxic effects. Recent studies have demonstrated that ketamine is cytotoxic in several cell types, such as fibroblasts, hepatocytes, uroepithelial cells, and adult induced pluripotent stem cells (iPSCs). Ketamine has been shown to dysregulate calcium signalling, increase reactive oxygen species (ROS) production, and impair mitochondrial function, ultimately leading to apoptosis. However, it is unclear whether endoplasmic reticulum (ER) stress plays a role in ketamine associated neurotoxicity in striatal neurons. Disruption to ER homeostasis can initiate ER-mediated cell death, which has been implicated in several neurodegenerative diseases. Thus, the purpose of this study was to determine whether ketamine's neurotoxic effects involve an ER stress-dependent pathway and to elucidate the underlying mechanisms involved in its neurotoxic effects. Mouse striatal cells were treated with various concentrations of ketamine (10 µM, 100 µM, 1 mM) or DMEM for 9-72 hrs. Cell viability was assessed using the MTT assay, and changes in gene expression of ER stress markers were evaluated using RT-qPCR. MTT results revealed that 1 mM ketamine decreased cell viability in striatal cells after 24 h of treatment. Gene expression studies complemented these findings such that ketamine upregulated pro-apoptotic ER stress markers, including X-box binding protein 1 (XBP1), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) and downregulated pro-survival ER stress proteins such as GRP78, MANF and CDNF. Ketamine activated all three stress sensing pathways including PERK, IRE1, and ATF6. Taken together, our results show that ketamine-induced neurotoxicity is mediated through an ER stress-dependent apoptotic pathway.


Assuntos
Estresse do Retículo Endoplasmático , Ketamina , Animais , Apoptose , Retículo Endoplasmático , Ketamina/toxicidade , Camundongos , Fatores de Crescimento Neural/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...